How the Brain Is Computing the Mind

Ed Boyden [2.12.16]

The history of science has shown us that you need the tools first. Then you get the data. Then you can make the theory. Then you can achieve understanding.

ED BOYDEN is a professor of biological engineering and brain and cognitive sciences at the MIT Media Lab and the MIT McGovern Institute. He leads the Synthetic Neurobiology Group. Ed Boyden's Edge Bio Page 


HOW THE BRAIN IS COMPUTING THE MIND

How can we truly understand how the brain is computing the mind? Over the last 100 years, neuroscience has made a lot of progress. We have learned that there are neurons in the brain, we have learned a lot about psychology, but connecting those two worlds, understanding how these computational circuits in the brain in coordinated fashion are generating decisions and thoughts and feelings and sensations, that link remains very elusive. And so, over the last decade, my group at MIT has been working on technology, ways of seeing the brain, ways of controlling brain circuits, ways of trying to map the molecules of the brain.

At this point, what I’m trying to figure out is what do we do next? How do we start to use these maps, use these dynamical observations and perturbations to link the computations that these circuits make and things like thoughts and feelings and maybe even consciousness?     

There are a couple of things that we can do. One idea is simply to go get the data. A lot of people have the opposite point of view. You want to have an idea about how the brain computes, the concept of how the mind is generating thoughts and feelings and so forth. Marvin Minsky, for example, is very fond of thinking about how intelligence and artificial intelligence can be arrived at through sheer thinking about it.

On the other hand, and it’s always dangerous to make analogies and metaphors like this, but if you look at other problems in biology like, what is life? how do species evolve? and so forth, people forget that there are huge amounts, centuries sometimes but at least decades of data that was collected before those theories emerged. 

About Richard Dawkins

On the 40th Anniversary of "The Selfish Gene" John Brockman [2.2.16]

Dawkins is a man of ideas…consequential ideas that actually influence and change people's lives—change the way other scientists think, make them think in a different, constructive way. 

Beginning in the 1960s and 1970s, something radically new was in the air: new ways of understanding physical systems, new ways of thinking about thinking that call into question many of our basic assumptions. A realistic biology of the mind, advances in evolutionary biology, physics, information technology, genetics, neurobiology, psychology, engineering, the chemistry of materials: all are questions of critical importance with respect to what it means to be human. For the first time, we had the tools and the will to undertake the scientific study of human nature.

No one has been more prominent, influential, and important to this revolution in scientific thinking than evolutionary biologist Richard Dawkins, who, 40 years ago, with the publication of his book, The Selfish Gene, changed our understanding of our place in nature.

Dawkins is a man of ideas…consequential ideas that actually influence and change people's lives—change the way other scientists think, make them think in a different, constructive way.

He epitomizes my idea of the Third Culture, which consists of those scientists and other thinkers in the empirical world who, through their work and expository writing, are taking the place of the traditional intellectual in rendering visible the deeper meanings of our lives, redefining who and what we are.

In the Third Culture, the role of the intellectual includes communicating. Intellectuals are not just people who know things but people who shape the thoughts of their generation. An intellectual is a synthesizer, a publicist, a communicator and the Third Culture thinkers such as Dawkins are the new public intellectuals.

Remembering Minsky

Marvin Minsky [1.26.16]


MARVIN MINSKY 1926-2016


    Minsky's First Law
Words should be your servants, not your masters.
    Minsky's Second Law
Don't just do something. Stand there
(From “What’s Your Law?” 2004)


"To say that the universe exists is silly, because it says that the universe is one of the things in the universe. So there's something wrong with questions like, "What caused the Universe to  exist?"



Marvin Minsky, Stephen Jay Gould, Nicholas Humphrey, John Brockman, Daniel C. Dennett @ Eastover Farm, August 1998: The birth of The Third Culture



THE REALITY CLUB: George Dyson, Ray Kurzweil, Rodney Brooks, Neil Gershenfeld, Daniel C. Dennett, Kevin Kelly, Jaron Lanier, Lee Smolin, Michael Hawley, Roger Schank, Brian Greene, Nicholas Negroponte, Pattie Maes, Gary Marcus, Sherry Turkle, Tod Machover, W. Daniel Hillis, Ed Boyden, Ken Forbus


From INTRODUCTION TO PART II: "A COLLECTION OF KLUDGES"
in THE THIRD CULTURE: BEYOND THE SCIENTIFIC REVOLUTION 
By John Brockman [5.1.96] 

Introduction
 

One of the central metaphors of the third culture is computation. The computer does computation and the mind does computation. To understand what makes birds fly, you may look at airplanes, because there are principles of flight and aerodynamics that apply to anything that flies. That is how the idea of computation figures into the new ways in which scientists are thinking about complicated systems.

At first, people who wanted to be scientific about the mind tried to treat it by looking for fundamentals, as in physics. We had waves of so-called mathematical psychology, and before that psychologists were trying to find a simple building block — an "atom" — with which to reconstruct the mind. That approach did not work. It turns out that minds, which are brains, are extremely complicated artifacts of natural selection, and as such they have many emergent properties that can best be understood from an engineering point of view.

We are also discovering that the world itself is very "kludgey"; it is made up of curious Rube Goldberg mechanisms that do cute tricks. This does not sit well with those who want science to be crystalline and precise, like Newton's pure mathematics. The idea that nature might be composed of Rube Goldberg machines is deeply offensive to people who have a strong esthetic drive — those who say that science must be beautiful, that it must be pure, that everything should be symmetrical and deducible from first principles. That esthetic has been a great motivating force in science, since Plato.

Counteracting it is the esthetic that emerges from this book — the esthetic that says the beauties of nature come from the interaction of mind-boggling complexities, and that it is complexity essentially most of the way down. The computational perspective — machines made out of machines made out of machines — is on the ascendant. There is a lot of talk about machines in this book.

Marvin Minsky is the leading light of AI — that is, artificial intelligence. He sees the brain as a myriad of structures. Scientists who, like Minsky, take the strong AI view believe that a computer model of the brain will be able to explain what we know of the brain's cognitive abilities. Minsky identifies consciousness with high-level, abstract thought, and believes that in principle machines can do everything a conscious human being can do. 

"SMART MACHINES' — Marvin Minsky 
Chapter 8 in THE THIRD CULTURE
By John Brockman [5.1.96]

Roger Schank: Marvin Minsky is the smartest person I've ever known. He's absolutely full of ideas, and he hasn't gotten one step slower or one step dumber. One of the things about Marvin that's really fantastic is that he never got too old. He's wonderfully childlike. I think that's a major factor explaining why he's such a good thinker. There are aspects of him I'd like to pattern myself after. Because what happens to some scientists is that they get full of their power and importance, and they lose track of how to think brilliant thoughts. That's never happened to Marvin.

Like everyone else, I think most of the time. But mostly I think about thinking. How do people recognize things? How do we make our decisions? How do we get our new ideas? How do we learn from experience? Of course, I don't think only about psychology. I like solving problems in other fields — engineering, mathematics, physics, and biology. But whenever a problem seems too hard, I start wondering why that problem seems so hard, and we're back again to psychology! Of course, we all use familiar self-help techniques, such as asking, "Am I representing the problem in an unsuitable way?" or "Am I trying to use an unsuitable method?" However, another way is to ask, "How would I make a machine to solve that kind of problem?"

A century ago, there would have been no way even to start thinking about making smart machines. Today, though, there are lots of good ideas about this. The trouble is, almost no one has thought enough about how to put all those ideas together. That's what I think about most of the time.

The technical field of research toward machine intelligence really started with the emergence in the 1940s of what was first called cybernetics. Soon this became a main concern of several different scientific fields, including computer science, neuropsychology, computational linguistics, control theory, cognitive psychology, artificial intelligence — and, more recently, the new fields called connectionism, virtual reality, intelligent agents, and artificial life.

Why are so many people now concerned with making machines that think and learn? It's clear that this is useful to do, because we already have so many machines that solve so many important and interesting problems. But I think we're motivated also by a negative reason: the sense that our traditional concepts about psychology are no longer serving us well enough. Psychology developed rapidly in the early years of this century, and produced many good theories about the periphery of psychology — notably, about certain aspects of perception, learning, and language. But experimental psychology never told us enough about issues of more central concern — about thinking, meaning, consciousness, or feeling. ... [Continue]


CONSCIOUSNESS IS A BIG SUITCASE
A Talk with Marvin Minsky [9.26.98]


Marvin Minsky, Alan Guth, Daniel C. Dennett, Rodney Brooks, Nicholas Humphrey, Lee Smolin

My goal is making machines that can think—by understanding how people think. One reason why we find this hard to do is because our old ideas about psychology are mostly wrong. Most words we use to describe our minds (like "consciousness", "learning", or "memory") are suitcase-like jumbles of different ideas. Those old ideas were formed long ago, before 'computer science' appeared. It was not until the 1950s that we began to develop better ways to help think about complex processes.

Computer science is not really about computers at all, but about ways to describe processes. As soon as those computers appeared, this became an urgent need. Soon after that we recognized that this was also what we'd need to describe the processes that might be involved in human thinking, reasoning, memory, and pattern recognition, etc.

JB: You say 1950, but wouldn't this be preceded by the ideas floating around the Macy Conferences in the '40s?

MM: Yes, indeed. Those new ideas were already starting to grow before computers created a more urgent need. Before programming languages, mathematicians such as Emil Post, Kurt Gödel, Alonzo Church, and Alan Turing already had many related ideas. In the 1940s these ideas began to spread, and the Macy Conference publications were the first to reach more of the technical public. In the same period, there were similar movements in psychology, as Sigmund Freud, Konrad Lorenz, Nikolaas Tinbergen, and Jean Piaget also tried to imagine advanced architectures for 'mental computation.' In the same period, in neurology, there were my own early mentors-Nicholas Rashevsky, Warren McCulloch and Walter Pitts, Norbert Wiener, and their followers-and all those new ideas began to coalesce under the name 'cybernetics.' Unfortunately, that new domain was mainly dominated by continuous mathematics and feedback theory. This made cybernetics slow to evolve more symbolic computational viewpoints, and the new field of Artificial Intelligence headed off to develop distinctly different kinds of psychological models.

JB: Gregory Bateson once said to me that the cybernetic idea was the most important idea since Jesus Christ.

MM: Well, surely it was extremely important in an evolutionary way. Cybernetics developed many ideas that were powerful enough to challenge the religious and vitalistic traditions that had for so long protected us from changing how we viewed ourselves. These changes were so radical as to undermine cybernetics itself. So much so that the next generation of computational pioneers-the ones who aimed more purposefully toward Artificial Intelligence-set much of cybernetics aside.

Let's get back to those suitcase-words (like intuition or consciousness) that all of us use to encapsulate our jumbled ideas about our minds. We use those words as suitcases in which to contain all sorts of mysteries that we can't yet explain. This in turn leads us to regard these as though they were "things" with no structures to analyze. I think this is what leads so many of us to the dogma of dualism-the idea that 'subjective' matters lie in a realm that experimental science can never reach. Many philosophers, even today, hold the strange idea that there could be a machine that works and behaves just like a brain, yet does not experience consciousness. If that were the case, then this would imply that subjective feelings do not result from the processes that occur inside brains. Therefore (so the argument goes) a feeling must be a nonphysical thing that has no causes or consequences. Surely, no such thing could ever be explained! ...[Continue]


THE EMOTION UNIVERSE
A Talk with Marvin Minsky [9.16.02]


Ray Kurzweil, Seth Lloyd, Alan Guth, Paul Steinhardt, Marvin Minsky

To say that the universe exists is silly, because it says that the universe is one of the things in the universe. So there's something wrong with questions like, "What caused the Universe to exist?

I was listening to this group talking about universes, and it seems to me there's one possibility that's so simple that people don't discuss it. Certainly a question that occurs in all religions is, "Who created the universe, and why? And what's it for?" But something is wrong with such questions because they make extra hypotheses that don't make sense. When you say that X exists, you're saying that X is in the Universe. It's all right to say, "this glass of water exists" because that's the same as "This glass is in the Universe." But to say that the universe exists is silly, because it says that the universe is one of the things in the universe. So there's something wrong with questions like, "What caused the Universe to exist?"

The only way I can see to make sense of this is to adopt the famous "many-worlds theory" which says that there are many "possible universes" and that there is nothing distinguished or unique about the one that we are in - except that it is the one we are in. In other words, there's no need to think that our world 'exists'; instead, think of it as like a computer game, and consider the following sequence of 'Theories of It":

(1) Imagine that somewhere there is a computer that simulates a certain World, in which some simulated people evolve. Eventually, when these become smart, one of those persons asks the others, "What caused this particular World to exist, and why are we in it?" But of course that World doesn't 'really exist' because it is only a simulation.

(2) Then it might occur to one of those people that, perhaps, they are part of a simulation. Then that person might go on to ask, "Who wrote the Program that simulates us, and who made the Computer that runs that Program?"

(3) But then someone else could argue that, "Perhaps there is no Computer at all. Only the Program needs to exist - because once that Program is written, then this will determine everything that will happen in that simulation. After all, once the computer and program have been described (along with some set of initial conditions) this will explain the entire World, including all its inhabitants, and everything that will happen to them. So the only real question is what is that program and who wrote it, and why"

(4) Finally another one of those 'people' observes, "No one needs to write it at all! It is just one of 'all possible computations!' No one has to write it down. No one even has to think of it! So long as it is 'possible in principle,' then people in that Universe will think and believe that they exist!'

So we have to conclude that it doesn't make sense to ask about why this world exists. However, there still remain other good questions to ask, about how this particular Universe works. For example, we know a lot about ourselves - in particular, about how we evolved - and we can see that, for this to occur, the 'program' that produced us must have certain kinds of properties. For example, there cannot be structures that evolve (that is, in the Darwinian way) unless there can be some structures that can make mutated copies of themselves; this means that some things must be stable enough to have some persistent properties. Something like molecules that last long enough, etc. ...[Continue]


A Conversation: THE NEW HUMANISTS:
Daniel C. Dennett, Marvin Minsky, and John Brockman

[9.18.03]

Part 1

Part 2


NEW PROSPECTS OF IMMORTALITY 
by Marvin Minsky
From: "What Are You Optimistic About?", 2007 

Benjamin Franklin: I wish it were possible... to invent a method of embalming drowned persons, in such a manner that they might be recalled to life at any period, however distant; for having a very ardent desire to see and observe the state of America a hundred years hence, I should prefer to an ordinary death, being immersed with a few friends in a cask of Madeira, until that time, then to be recalled to life by the solar warmth of my dear country! But... in all probability, we live in a century too little advanced, and too near the infancy of science, to see such an art brought in our time to its perfection.
—Letter to Jacques Dubourg, April 1773

Eternal life may come within our reach once we understand enough about how our knowledge and mental processes are embodied in our brains. For then we should be able to duplicate that information — and then into more robust machinery. This might be possible late in this century, in view of how much we are learning about how human brains work — and the growth of computer capacities.

However, this could have been possible long ago if the progress of science had not succumbed to the spread of monotheistic religions. For as early as 250 BCE, Archimedes was well on the way toward modern physics and calculus. So in an alternate version of history (in which the pursuit of science did not decline) just a few more centuries could have allowed the likes of Newton, Maxwell, Gauss, and Pasteur to anticipate our present state of knowledge about physics, mathematics, and biology. Then perhaps by 300 AD we could have learned so much about the mechanics of minds that citizens could decide on the lengths of their lives.

I'm sure that not all scholars would agree that religion retarded the progress of science. However, the above scenario seems to suggest that Pascal was wrong when he concluded that only faith could offer salvation. For if science had not lost those millennia, we might be already be able to transfer our minds into our machines. If so, then you could rightly complain that religions have deprived you of the option of having an afterlife!

Do we really want to lengthen our lives?

Woody Allen: I don't want to achieve immortality through my work. I want to achieve it through not dying.

In discussing this prospect with various groups, I was surprised to find that the idea of extending one's lifetime to thousands of years was often seen as a dismal suggestion. The response to my several informal polls included such objections as these: "Why would anyone want to live for a thousand hundred years? What if you outlived all your friends? What would you do with all that time? Wouldn't one's life become terribly boring?"

What can one conclude from this? Perhaps some of those persons lived with a sense that they did not deserve to live so long. Perhaps others did not regard themselves as having worthy long term goals. In any case, I find it worrisome that so many of our citizens are resigned to die. A planetful of people who feel that they do not have much to lose: surely this could be dangerous. (I neglected to ask the religious ones why perpetual heaven would be less boring.)

However, my scientist friends showed few such concerns: "There are countless things that I want to find out, and so many problems I want to solve, that I could use many centuries." I'll grant that religious beliefs can bring mental relief and emotional peace—but I question whether these, alone, should be seen as commendable long-term goals.

The quality of extended lives

Anatole France: The average man, who does not know what to do with his life, wants another one which will last forever.

Certainly, immortality would seem unattractive if it meant endless infirmity, debility, and dependency upon others—but here we'll assume a state of perfect health. A somewhat sounder concern might be that the old ones should die to make room for young ones with newer ideas. However, this leaves out the likelihood that are many important ideas that no human person could reach in, say, less than a few hundred well focused years. If so, then a limited lifespan might deprive us of great oceans of wisdom that no one can grasp.

In any case, such objections are shortsighted because, once we embody our minds in machines, we'll find ways to expand their capacities. You'll be able to edit your former mind, or merge it with parts of other minds — or develop completely new ways to think. Furthermore, our future technologies will no longer constrain us to think at the crawling pace of "real time." The events in our computers already proceed a millions times faster than those in our brain. To such beings, a minute might seem as long as a human year.

How could we download a human mind?

Today we are only beginning to understand the machinery of our human brains, but we already have many different theories about how those organs embody the processes that we call our minds. We often hear arguments about which of those different theories are right — but those often are the wrong questions to ask, because we know that every brain has hundreds of different specialized regions that work in different ways. I have suggested a dozen different ways in which our brains might represent our skill and memories. It could be many years before we know which structures and functions we'll need to reproduce.

(No such copies can yet be made today, so if you want immortality, your only present option is to have your brain preserved by a Cryonics company. However, improving this field still needs further research — but there is not enough funding for this today — although the same research is also needed for advancing the field of transplanting organs.)

Some writers have even suggested that, to make a working copy of a mind, one might have to include many small details about the connections among all the cells of a brain; if so, it would require an immense amount of machinery to simulate all those cells' chemistry. However, I suspect we'll need far less than that, because our nervous systems must have evolved to be insensitive to lower-level details; otherwise, our brains would rarely work.

Fortunately, we won't need to solve all those problems at once. For long before we are able to make complete "backups" of our personalities, this field of research will produce a great flood of ideas for adding new features and accessories to our existing brains. Then this may lead, through smaller steps, to replacing all parts of our bodies and brains — and thus repairing all the defects and flaws that make presently our lives so brief. And the more we learn about how our brains work, the more ways we will find to provide them with new abilities that never evolved in biology.

Nineteen reasons why marriages succeed

[Neunzehn Gründe, warum Ehen glücken] Manuela Lenzen [1.21.16]

From Gene-knives and autistic neurons: The Scholars Association "Edge Foundation" asked well-known researchers, what is revolutionizing the sciences.The result is a fascinating kaleidoscope of new knowledge and methods.


[click for German original]

The big bang may not have been such a huge thud, as we imagine. Drones revolutionize not only the war, but also the research on wild animals. Two-thirds of all cancers are due to random mutations. And three principles are sufficient to define rationality. All answers to the question placed before the scientists of the "Third Culture" of American literary agent John Brockman: "What is the most interesting scientific news? And what makes them so important?"

For almost twenty years Brockman puts on his online forum edge.org regularly such a question: "What do you think is right, even if you can not prove it?" (2005), "What do you ask yourself?" (1998), "What is the scientific idea is ready for retirement?" (2014). For "Third Culture" is one of Brockman researchers from natural sciences and humanities, discuss their findings in a larger, multi-disciplinary and social context.

In his this year's question Brockman got 198 very different answers. They range from knowledge about the importance of microbes in the digestive tract of new, resource-saving battery technologies and 3D printers in the medical technology to intelligently networked "green cities". The crisis of psychology, triggered by too many non-reproducible results, just missing a little like a study for vaccination against Ebola and one of the testing, "autistic neurons" to grow in the petri dish.

The Crusade Against Multiple Regression Analysis

Richard Nisbett [1.21.16]

A huge range of science projects are done with multiple regression analysis. The results are often somewhere between meaningless and quite damaging. ...                             

I hope that in the future, if I’m successful in communicating with people about this, that there’ll be a kind of upfront warning in New York Times articles: These data are based on multiple regression analysis. This would be a sign that you probably shouldn’t read the article because you’re quite likely to get non-information or misinformation.

RICHARD NISBETT is a professor of psychology and co-director of the Culture and Cognition Program at the University of Michigan. He is the author of Mindware: Tools for Smart Thinking; and The Geography of Thought. Richard Nisbett's Edge Bio Page.


THE CRUSADE AGAINST MULTIPLE REGRESSION ANALYSIS

The thing I’m most interested in right now has become a kind of crusade against correlational statistical analysis—in particular, what’s called multiple regression analysis. Say you want to find out whether taking Vitamin E is associated with lower prostate cancer risk. You look at the correlational evidence and indeed it turns out that men who take Vitamin E have lower risk for prostate cancer. Then someone says, "Well, let’s see if we do the actual experiment, what happens." And what happens when you do the experiment is that Vitamin E contributes to the likelihood of prostate cancer. How could there be differences? These happen a lot. The correlational—the observational—evidence tells you one thing, the experimental evidence tells you something completely different.

A MESSAGE FROM PARIS

An EDGE Special Event! Ian McEwan [11.14.15]

ED. NOTE: Ian McEwan, who is living in France this month, sent the following email this afternoon from Paris which he asked us to share with the Edge community. And the community is responding - we are pleased to include a Reality Club discussion with contributions from: Scott AtranDaniel L. EverettDan SperberJames J. O'Donnell, Lawrence B. Brilliant, Lisa Randall, Lee Smolin, John ToobyEduardo Salcedo-AlbaranMore to come....

JB 

IAN MCEWAN, the award-winning British novelist, is the author of The Child in Time (winner of the Whitbread Novel of the Year Award, 1987), Amsterdam (winner of the Booker Prize, 1998), Atonement, Sweet Tooth, and The Children Act. He lives in London. Ian McEwan's Edge Bio Page


The death cult chose its city well—Paris, secular capital of the world, as hospitable, diverse and charming a metropolis as was ever devised. And the death cult chose its targets in the city with ghoulish, self-damning accuracy—everything they loathed stood plainly before them on a happy Friday evening: men and women in easy association, wine, free-thinking, laughter, tolerance, music—wild and satirical rock and blues. The cultists came armed with savage nihilism and a hatred that lies beyond our understanding. Their protective armour was the suicide belt, their idea of the ultimate hiding place was the virtuous after-life, where the police cannot go. (The jihadist paradise is turning out to be one of humanity’s worst ever ideas; slash and burn in this life, eternal rest among kitsch in the next).

What is Reputation?

Gloria Origgi [11.5.15]

NEW — A Reality Club discussion with responses from: Abbas RazaWilliam Poundstone, Hugo Mercier, Quentin Hardy, Martin Nowak and Roger Highfield, Bruce Schneier, Kai Krause, Sumit Paul-Choudhury, Margaret Levi.

That is basically what interests me—the double question of understanding our own biases, but also understanding the potential of using this indirect information and these indirect cues of quality of reputation in order to navigate this enormous amount of knowledge. What is interesting about Internet, and especially about the Web, is that Internet is not only an enormous reservoir of information, it is a reputational device. It means that it accumulates tons of evaluations of other people, so the information you get is pre-evaluated. This makes you go much faster. This is an evolutionary heuristic that we have, probably since the birth of the human mind.

Follow the people who know how to treat information. Don't go yourself for the solution. Follow those who have the solution. This is a super strong drive—to learn faster. Children know very well this drive. And of course it can bring you to conformism and have very negative side effects, but also can make you know faster. We know faster, not because there is a lot of information around, but because the information that is around is evaluated; it has a reputational label on it. 

Introduction

This Edge feature is our second foray into the idea of "reputation" in the age of the Internet. The first, in December 2004, "Indirect Reciprocity, Assessment Hardwiring, And Reputation": A Conversation with Karl Sigmund, occurred in another era (or was it another planet): no iPhones, no Facebook, no Twitter. We were sending faxes through our PCs and Macs attached to modems, and short messages through our pagers.

At that time Sigmund said, "In the early 70s, I read a famous paper by Robert Trivers, one of five he wrote as a graduate student at Harvard, in which the idea of indirect reciprocity was mentioned obliquely. He spoke of generalized altruism, where you are giving back something not to the person you owed it to but to somebody else in society. This sentence suggested the possibility that generosity may be a consideration of how altruism works in evolutionary biology."

"I am often thinking about the different ways of cooperating," he added, "and nowadays I'm mostly thinking about the strange aspects of indirect reciprocity. Right now it turns out that economists are excited about this idea in the context of e-trading and e-commerce. In this case you also have a lot of anonymous interactions, not between the same two people but within a hugely mixed group where you are unlikely ever to meet the same person again. Here the question of trusting the other, the idea of reputation, is particularly important. Google Page Rankings, the reputation of eBay buyers and sellers, and Amazon reader reviews are all based on trust, and there is a lot of moral hazard inherent in these interactions."

Gloria Origgi, whose previous Edge feature, "Who's Afraid Of The Third Culture?" appeared in these pages in 2006, is an exemplar of the Third Culture in Europe. According to philospher Daniel C. Dennett, she has completely mastered everything from philosophy to neuroscience, moving gracefully through the conceptual jungles of everything from neuroscience to cognitive science to anthropology. A Parisian, she is an antidote to that European genre of French thought that creates the illusion of depth and profundity that Dennett calls "Eumerdification"*.

In "What Is Reputation?" Origgi talks about "the double question of understanding our own biases, but also understanding the potential of using this indirect information and these indirect cues of quality of reputation in order to navigate this enormous amount of knowledge.

"What is interesting about Internet, and especially about the Web, is that Internet is not only an enormous reservoir of information, it is a reputational device. It means that it accumulates tons of evaluations of other people, so the information you get is pre-evaluated. This makes you go much faster. This is an evolutionary heuristic that we have, probably since the birth of the human mind.

"Follow the people who know how to treat information. Don't go yourself for the solution. Follow those who have the solution. This is a super strong drive—to learn faster. Children know very well this drive. And of course it can bring you to conformism and have very negative side effects, but also can make you know faster. We know faster, not because there is a lot of information around, but because the information that is around is evaluated; it has a reputational label on it."

GLORIA ORIGGI is a researcher at the Centre Nationale de la Recherche Scientifique in Paris and a journalist. She is a best-selling novelist in the Italian language, a respected philosopher in French, a cognitive scientist in English, and the person you want to sit next to at a dinner party. Her latest book, La Reputation, was recently published in France. Gloria Origgi's Edge Bio Page.

[* Dennett writes in his book Breaking The Spell: "John Searle once told me about a conversation he had with the late Michel Foucault: 'Michel, you're so clear in conversation; why is your written work so obscure?' To which Foucault replied, 'That's because, in order to be taken seriously by French philosophers, twenty-five percent of what you write has to be impenetrable nonsense.' I have coined a term for this tactic, in honour of Foucault's candor: eumerdification."]

John Brockman


WHAT IS REPUTATION?

I'm a philosopher and I do some social sciences, but basically I stick to philosophy in my method, in my way of tackling questions. I was interested in epistemology, in questions about knowledge. At a certain point in the early 2000s, Internet became such a major phenomenon that I started to be interested in transformations of the ways in which we organize, access, produce, and distribute knowledge that was dependent on the introduction of Internet in our lives.

I was interested in the question of trust. It seems like a paradox. The traditional view of knowledge in philosophy and epistemology is that you should not trust, and you should be an autonomous thinker. You should have in your own mind the means to filter information, and to infer new knowledge from what you already know without taking into account the opinion of others. The opinion of others is doxa, and episteme—the true knowledge—is the opposite, being an autonomous knower. With Internet and this hyperconnectivity in which knowledge started to spin around faster than light, I had the feeling that trust was becoming a very important aspect of the way in which we acquire knowledge.

WHAT DO YOU CONSIDER THE MOST INTERESTING RECENT [SCIENTIFIC] NEWS? WHAT MAKES IT IMPORTANT?

"I am both thrilled and frightened." 
John C. Mather, Nobel Laureate, Physics

"Ranunculus 2016" by Katinka Matson |  Click to Expand | katinkamatson.com

Scientific topics receiving prominent play in newspapers and magazines over the past several years include molecular biology, artificial intelligence, artificial life, chaos theory, massive parallelism, neural nets, the inflationary universe, fractals, complex adaptive systems, superstrings, biodiversity, nanotechnology, the human genome, expert systems, punctuated equilibrium, cellular automata, fuzzy logic, space biospheres, the Gaia hypothesis, virtual reality, cyberspace, and teraflop machines. ... Unlike previous intellectual pursuits, the achievements of the third culture are not the marginal disputes of a quarrelsome mandarin class: they will affect the lives of everybody on the planet.

You might think that the above list of topics is a preamble for the Edge Question 2016, but you would be wrong. It was a central point in my essay, "The Third Culture," published 25 years ago in The Los Angeles Times, 1991 (see below). The essay, a manifesto, was a collaborative effort, with input from Stephen Jay Gould, Murray Gell-Mann, Richard Dawkins, Daniel C. Dennett, Jared Diamond, Stuart Kauffman, Nicholas Humphrey, among other distinguished scientists and thinkers. It proclaimed:

The third culture consists of those scientists and other thinkers in the empirical world who, through their work and expository writing, are taking the place of the traditional intellectual in rendering visible the deeper meanings of our lives, redefining who and what we are.

"The wide appeal of the third-culture thinkers," I wrote, "is not due solely to their writing ability; what traditionally has been called 'science' has today become 'public culture.' Stewart Brand writes that 'Science is the only news. When you scan through a newspaper or magazine, all the human interest stuff is the same old he-said-she-said, the politics and economics the same sorry cyclic dramas, the fashions a pathetic illusion of newness, and even the technology is predictable if you know the science. Human nature doesn't change much; science does, and the change accrues, altering the world irreversibly.' We now live in a world in which the rate of change is the biggest change." Science has thus become a big story, if not the big story: news that will stay news.

This is evident by the continued relevance today of the scientific topics in the 1991 essay that were all in play before the Web, social media, mobile communications, deep learning, big data. Time for an update. …


WHAT DO YOU CONSIDER THE MOST INTERESTING RECENT [SCIENTIFIC] NEWS? WHAT MAKES IT IMPORTANT?

"Stellar read! Best of the year already. Truly impressed again by the intellectual firepower of Edge."  —Süddeutsche Zeitung

"I’ve just treated myself to the first third, roughly, of this year’s Edge answers. Addictive, fascinating, exciting—even on topics that I already knew quite a lot about. Very high quality."   —Daniel C. Dennett

"What is the most interesting scientific news? Very, VERY smart people respond." BoingBoing

"The Question pushed divergence, and that’s where the wealth of the Edge network is." —Stewart Brand 


 

John Brockman, Publisher & Editor
Russell Weinberger, Associate Publisher
Nina Stegeman, Associate Editor
Katinka Matson, Co-founder & Resident Artist


 [ click for full media coverage of the 2016 Edge Question ] 


The News of Science Have Consequences
By Luca De Biase

n. 510 | Domenica 10 gennaio 2016

Nova magazine features contributions from Peter GabrielKevin Kelly, and Bill Joy


Pages

Subscribe to Front page feed