2007 : WHAT ARE YOU OPTIMISTIC ABOUT? [1]

david_dalrymple's picture [5]
Research affiliate, MIT Media Lab
Student, MIT's Center for Bits and Atoms; Researcher, Internet 0, Fab Lab Thinner Clients for South Africa, Conformal Computing

Technology in Education

There's a lot in science and technology to be optimistic about, as evidenced by the numerous responses to the question, but I'll focus on the role of technology in education.

Before I entered college, I had never been enrolled in a school. Some of my education was provided by books, magazines, museums, and the like, but I feel the most useful was provided by technology. I was in the first generation to grow up with the Web as a fact of life, and made use of online references and search engines every day to research topics in which I'd become interested. From early childhood, many of my questions were answered by a mix of university websites, ad-supported niche reference works, and charitable individuals sharing their own personal knowledge with the world. Today, Wikipedia alone provides peer-reviewed, freely contributed articles on over 1.5 million subjects, and Google indexed 25 billion items in 2005 (it no longer publishes the count). Almost any piece of knowledge known to man can now be located on the Web at the touch of a button.

New means of communication can also aid education. When I was 7, I emailed a science consultant whenever I had a question that I couldn't find a ready answer for on the Web — questions such as "Why don't the passengers in the Concorde hear a sonic boom?", and "Where can I find the Bohr model of every chemical element?" In 1999, during the week of my 8th birthday, I used email to first contact the author of a book I really liked (When Things Start to Think), who happened to be Neil Gershenfeld, now my faculty advisor. I probably wouldn't have bothered to write a formal letter, so if email didn't exist, my educational trajectory would have been entirely different. I was also mentored from many miles away by Ray Kurzweil, in a series of conversations enabled by email; this was another major influence on my life.

Computing is also a creative tool: it can be used to write essays (like this one), produce works of art (I've sold fractal-based art at local festivals), and write computer programs. Programming fascinated me from a very early age, but it wouldn't have kept my interest long if I didn't have access to a computer. I think that my experiences in programming may have been the most influential in my intellectual development: problem-solving and critical thinking are rewarded, math skills are enforced, and I even wrote programs to help teach me things, like an arithmetic drill I wrote in LOGO at age 5. I was also greatly aided throughout my college education in computer science by my earlier self-guided learning of many of the same concepts. Whereas I was taught 8 programming languages in college, I've learned over twice as many others on my own, and those were some of my most valuable and (so far) useful learning experiences.

Seymour Papert's constructionist theory best explains my personal experience with education: "Constructionism is built on the assumption that children will do best by finding ('fishing') for themselves the specific knowledge they need. Organized or informal education can help most by making sure they are supported morally, psychologically, materially, and intellectually in their efforts."

From this point of view, what holds back the education of children in the developing world isn't so much a lack of school-houses or qualified teachers, but a lack of access to technology and communications. Without the Internet, there's no good place for these children to "fish" for knowledge — the local elders probably don't have a Periodic Table of Elements on the hut wall.

But I'm optimistic because the unstoppable force of Nicholas Negroponte's charisma is now squarely facing off against this problem. He's convinced a dream team of technical, educational, and political leaders to spend lots of money and time working on it. His One Laptop Per Child (OLPC) project shows no signs of failing, despite many reports to the contrary, and it's moving at a breakneck pace towards a future, not more than a decade or two off, when every child in the world - developing and developed — really does have a laptop. Imagining the possibilities is a start, but it seems like the OLPC team, driven by the constructionist theories, has developed a host of innovative hardware and software that really do promise to bring a useful and creative education to the world.

I'm optimistic because my lab, the Center for Bits and Atoms, with the aid of the NSF and other global organizations, is deploying "Fab Labs" — Fabrication Laboratories - all around the world, from Boston to the Midwest to rural India and a village north of the Arctic Circle. Fab Labs bring something that even the developed world lacks broad access to: cheap, easy fabrication of physical objects and custom electronics. With a set of inventory, machines and computers that totals roughly US$50,000, those who enter the lab can make wooden furniture, high-gain antennas, and even ~$10 "thinner clients" (terminals that connect over a variety of communications media to ~$1200 servers that support hundreds of users). These types of objects can be and are developed by local inventors, produced by oneself or in a "micro-VC" community business, and cost very little. Fab Labs are also another huge enabling factor for constructionist education; making things is one of the most useful and creative sorts of education.

Media artist Toshio Iwai, who was Artist-in-Residence at San Francisco's Exploratorium and wrote the video game Electroplankton, told a story that his mother took away all his toys when he was a small child and told him that he could only play with toys he made himself. Iwai credits that moment as a turning point in his life: from passive to active, consumer to creator. I'm optimistic that in the future, education will not take place in centralized Houses of Learning, places where students listen to lectures and then answer questions about them; that education will take place at construction sites, in art studios, in computing centers: places where useful and creative things are done. I'm optimistic that it will be a more useful and creative education that will produce more useful and creative people that will contribute, in turn, to a more useful and creative society.