|
WHO CARES ABOUT FIREFLIES?: STEVEN STROGATZ (p2) The story of how I got interested in cycles goes back to an epiphany in high school. I was taking a standard freshman science course, Science I, and the first day we were asked to measure the length of the hall. We were told to get down on our hands and knees, put down rulers, and figure out how long the corridor was. I remember thinking to myself, "If this is what science is, it's pretty pointless," and came away with the feeling that science was boring and dusty. Fortunately I took to the second experiment a little better. The teacher, Mr. diCurcio, said, "I want you to figure out a rule about this pendulum." He handed each of us a little toy pendulum with a retractable bob. You could make it a little bit longer or shorter in clicks, in discrete steps. We were each handed a stopwatch and told to let the pendulum swing ten times, and then click, measure how long it takes for ten swings, and then click again, repeating the measurement after making the pendulum a little bit longer. The point was to see how the length of the pendulum determines how long it takes to make ten swings. The experiment was supposed to teach us about graph paper, and how to make a relationship between one variable and another, but as I was dutifully plotting the length of time the pendulum took to swing ten times versus its length, it occurred to me after about the fourth or fifth dot that a pattern was starting to emerge. These dots were falling on a particular curve that I recognized because I'd seen it in my algebra class—it was a parabola, the same shape that water makes coming out of a fountain. I remember
having an enveloping sensation of fear; it was not a happy feeling,
but an awestruck feeling. It was as if this pendulum knew algebra. What
was the connection between the parabolas in algebra class and the motion
of this pendulum? There it was on the graph paper. It was a moment that
struck me, and was my first sense that the phrase, "law of nature,"
meant something. I suddenly knew what people were talking about when
they said that there could be order in the universe and that, more to
the point, you couldn't see it unless you knew math. It was an epiphany
that I've never really recovered from. The unity of nature shouldn't be exaggerated, since this is certainly not to claim that everything is the same, but there are certain threads that reappear. Resonance is an idea that we can use to understand vibrations of bridges and to think about atomic structure and sound waves, and the same mathematics applies over and over again in different versions. |