THE INFLATIONARY UNIVERSE

ALAN GUTH: Paul Steinhardt did a very good job of presenting the case for the cyclic universe. I'm going to describe the conventional consensus model upon which he was trying to say that the cyclic model is an improvement. I agree with what Paul said at the end of his talk about comparing these two models; it is yet to be seen which one works. But there are two grounds for comparing them. One is that in both cases the theory needs to be better developed. This is more true for the cyclic model, where one has the issue of what happens when branes collide. The cyclic theory could die when that problem finally gets solved definitively. Secondly, there is, of course, the observational comparison of the gravitational wave predictions of the two models.

A brane is short for membrane, a term that comes out of string theories. String theories began purely as theories of strings, but when people began to study their dynamics more carefully, they discovered that for consistency it was not possible to have a theory which only discussed strings. Whereas a string is a one-dimensional object, the theory also had to include the possibility of membranes of various dimensions to make it consistent, which led to the notion of branes in general. The theory that Paul described in particular involves a four-dimensional space plus one time dimension, which he called the bulk. That four-dimensional space was sandwiched between two branes.

That's not what I'm going to talk about. I want to talk about the conventional inflationary picture, and in particular the great boost that this picture has attained over the past few years by the somewhat shocking revelation of a new form of energy that exists in the universe. This energy, for lack of a better name, is typically called "dark energy."

But let me start the story further back. Inflationary theory itself is a twist on the conventional Big Bang theory. The shortcoming that inflation is intended to overcome is the basic fact that, although the Big Bang theory is called the Big Bang it is in fact not really a theory of a bang at all; it never was. The conventional Big Bang theory, without inflation, was really only a theory of the aftermath of the Bang. It started with all of the matter in the universe already in place, already undergoing rapid expansion, already incredibly hot. There was no explanation of how it got that way. Inflation is an attempt to answer that question, to say what "banged," and what drove the universe into this period of enormous expansion. Inflation does that very wonderfully. It explains not only what caused the universe to expand, but also the origin of essentially all the matter in the universe at the same time. I qualify that with the word "essentially" because in a typical version of the theory inflation needs about a gram's worth of matter to start. So, inflation is not quite a theory of the ultimate beginning, but it is a theory of evolution that explains essentially everything that we see around us, starting from almost nothing.

The basic idea behind inflation is that a repulsive form of gravity caused the universe to expand. General relativity from its inception predicted the possibility of repulsive gravity; in the context of general relativity you basically need a material with a negative pressure to create repulsive gravity. According to general relativity it's not just matter densities or energy densities that create gravitational fields; it's also pressures. A positive pressure creates a normal attractive gravitational field of the kind that we're accustomed to, but a negative pressure would create a repulsive kind of gravity. It also turns out that according to modern particle theories, materials with a negative pressure are easy to construct out of fields which exist according to these theories. By putting together these two ideas — the fact that particle physics gives us states with negative pressures, and that general relativity tells us that those states cause a gravitational repulsion — we reach the origin of the inflationary theory.

By answering the question of what drove the universe into expansion, the inflationary theory can also answer some questions about that expansion that would otherwise be very mysterious. There are two very important properties of our observed universe that were never really explained by the Big Bang theory; they were just part of one's assumptions about the initial conditions. One of them is the uniformity of the universe — the fact that it looks the same everywhere, no matter which way you look, as long as you average over large enough volumes. It's both isotropic, meaning the same in all directions, and homogeneous, meaning the same in all places. The conventional Big Bang theory never really had an explanation for that; it just had to be assumed from the start. The problem is that, although we know that any set of objects will approach a uniform temperature if they are allowed to sit for a long time, the early universe evolved so quickly that there was not enough time for this to happen. To explain, for example, how the universe could have smoothed itself out to achieve the uniformity of temperature that we observe today in the cosmic background radiation, one finds that in the context of the standard Big Bang theory, it would be necessary for energy and information to be transmitted across the universe at about a hundred times the speed of light.

 

Previous Page 1 2 3 4 5 6 Next