Imagine a superintelligent system with far more computational resources than us mere humans that’s trying to make inferences about what the humans who are surrounding it—which it thinks of as cute little pets—are trying to achieve so that it is then able to act in a way that is consistent with what those human beings might want. That system needs to be able to simulate what an agent with greater constraints on its cognitive resources should be doing, and it should be able to make inferences, like the fact that we’re not able to calculate the zeros of the Riemann zeta function or discover a cure for cancer. It doesn’t mean we’re not interested in those things; it’s just a consequence of the cognitive limitations that we have.
As a parent of two small children, this is a problem that I face all the time, which is trying to figure out what my kids want, kids who are operating in an entirely different mode of computation, and having to build a kind of internal model of how a toddler’s mind works such that it’s possible to unravel that and work out that there’s a particular motivation for the very strange pattern of actions that they’re taking.
Both from the perspective of understanding human cognition and from the perspective of being able to build AI systems that can understand human cognition, it’s desirable for us to have a better model of how rational agents should act if those rational agents have limited cognitive resources. That’s something that I’ve been working on for the last few years. We have an approach to thinking about this that we call resource rationality. And this is closely related to similar ideas that are being proposed in the artificial intelligence literature. One of these ideas is the notion of bounded optimality, proposed by Stuart Russell.
TOM GRIFFITHS is Henry R. Luce Professor of Information, Technology, Consciousness, and Culture at Princeton University. He is co-author (with Brian Christian) of Algorithms to Live By. Tom Griffiths's Edge Bio Page