Edge: BEYOND COMPUTATION


BEYOND COMPUTATION: A TALK WITH RODNEY BROOKS

Another robot that we're just starting to get into production now after three years of testing is a robot to go down oil wells. This particular one is 5 centimeters in diameter and 14 meters long. It has to be autonomous, because you can't communicate by radio. Right now, if you want to go and manipulate oil wells while they are in production, you need a big infrastructure on the surface to shove a big thick cable down. This can mean miles and miles of cable, which means tons of cable on the surface, or a ship sitting above the oil well to push this stuff down through 30-foot segments of pipe that go one after the other after the other for days and days and days. We've built these robots that can go down oil wells,—where the pressure is 10,000 psi at 150 degrees Centigrade—carry along instruments, do various measurements, and find out where there might be too much water coming into the well. Modern wells have sleeves that can be moved back and forth to block off work in segments where changes in pressure in the shale layer from oil flow would suggest that it would be more effective to let the oil in somewhere else. When you have a managed oil well you're going to increase the production by about a factor of two over the life of the well. The trouble is, it's been far too expensive to manage the oil wells because you need this incredible infrastructure. These robots cost something on the order of a hundred thousand dollars.

They're retrievable, because you don't want them down there blocking the oil flow. And they're tiny. A robot that's five centimeters in diameter in an oil bores that is the standard size soon starts to clog things up. The robots go down there and you can't communicate with them, but we've pushed them to failures artificially and have also had some failures down there which we didn't predict, and in every case they've managed to reconfigure themselves and get themselves out.

Other things happening in robots are toys. Just like the first microprocessors, the first robots are getting into people's homes in toys. We had a bit of a downturn in high tech toys since September 11, and we're more back to basics, but it will spring back next year. There are a lot of high-tech, simple robot toys coming on the market; we're certainly playing in that space.

Another interesting thing just now starting to happen is robots in the home. For a couple of years now you've been able to buy lawn-mowing robots from the Israeli company, Friendly Machines. In the past month Electrolux has just started selling their floor-cleaning robot. A couple of other players have also made announcements, but no one's delivering besides Electrolux. We're on the start of the curve of getting robots into our homes and doing useful work if these products turn out to be successful.

My basic research is conducted at The Artificial Intelligence Lab at MIT, which is an interdisciplinary lab. We get students from across the Institute, although the vast majority are computer science majors. We also have electrical engineering majors, brain and cognitive science students, some mechanical engineering students, even some aeronautics and astronautics students these days because there is a big push for autonomous systems in space. We work on a mixture of applied and wacky theoretical stuff.

The most successful applied stuff over the last 3 or 4 years has been in assistance of surgery. Using computer vision techniques, we have built robots that take all different sorts of imagery during surgery. There are new MRI machines where you can have a patient inside an MRI as you're doing surgery. You get coarse measurements, register those with the fine MRI measurements done in a bigger machine beforehand, and then get the surgeon a real-time 3-dimensional picture of everything inside the brain of the patient undergoing brain surgery. If you go to one of the major hospitals here in Boston for brain surgery, you're going to have a surgeon assisted by AI systems developed at the lab. The first few times this was running we had grad students in the OR rebooting Unix at critical points. Now we're way past that—we don't have any one of our own staff there. It's all handed over to the surgeons and the hospital staff, and it's working well. They use it for every surgery.

The newest thing, which is just in clinical trials right now, is virtual colonoscopies. Instead of actually having to shove the thing up to look, we can take MRI scans, and then the clinician sits there and does a fly-through the body. Algorithms go in, look for the polyp, and highlight the potential polyps. It's an external scan to replace what has previously been an internal intrusion.

Previous | Page 1 2 3 4 5 6 Next